US009348669B2

a2 United States Patent 10) Patent No.: US 9,348,669 B2
Knichel et al. (45) Date of Patent: May 24, 2016
(54) USER INTERFACE FRAMEWORK 2003/0135825 Al 7/2003 Gertner et al.
2007/0169011 Al* 7/2007 Ramani etal. 717/136
. . s 2009/0210781 Al 8/2009 Hagerott
(71) - Applicant: Google Inc.. Mountain View, CA (US) 2010/0125854 Al* 52010 Narumanchi et al. 719313
. . . . 2010/0332968 Al* 12/2010 Squillace 715/234
(72) Inventors: Mark David Knichel, Mountain View, 2011/0029899 Al* 2/2011 Fainberg et al. ... 715/760
CA (US); Fengjia Li, San Francisco, CA 2011/0264787 Al* 10/2011 Mickensetal. 709/224
. B 2012/0297399 Al 11/2012 Beaver
(US); Malte Ubl, San Francisco, CA 2014/0053063 Al* 2/2014 Cirrincione etal. 715/235
(Us) 2015/0100879 Al* 4/2015 Nandagopaletal. 715/235
(73) Assignee: Google Inc., Mountain View, CA (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this WO 2013023143 Al 7/2013
patent is extended or adjusted under 35
U.S.C. 154(b) by 48 days. OTHER PUBLICATIONS
Ben Nadel, Creating AngularJS Controllers with instance method,
(21) Appl No.: 14/101,305 Sep. 12,2012, pp. 1-26.*
. Gregor Richards et al, “An Analysis of the Dynamic Behavior of
(22) Filed: Dec. 9, 2013 Javascript Programs”, Jun. 5, 2010, PLDI 10 Proceedings of the
2010 ACM.
(65) Prior Publication Data International Search Report and Written Opinion dated Mar. 19, 2015
for PCT/US2014/069152.
US 2015/0160987 Al Jun. 11, 2015
* cited by examiner
(51) Imt.ClL
GOGF 9/54 (2006.01) Primary Examiner — Syed Roni
GO6F 9/44 (2006.01)
(52) US.CL 57 ABSTRACT
CPCcccee. GO6F 9/542 (2013.01); GO6F 9/4443 Systems, methods and computer readable media for user
: interface frameworks are disclosed. In some implementa-
_ o (2013.01) jjterface f ks are disclosed. I impl
(58) Field of Classification Search tions, the method can include detecting, at a dispatcher within
CPC s GOGF 9/542; Gp6F 9/4443 a user interface framework, an event emitted from a user
See application file for complete search history. interface element contained within a document object model
. node associated with a controller. The method can also
(56) References Cited include requesting a module associated with the controller
U.S. PATENT DOCUMENTS and instantiating the controller. The method can further
include providing the event to the controller.
7,424,671 B2 9/2008 Elza et al.

8,407,319 B1* 3/2013 Chiuetal. ... 709/219

302

Detect Event

A 4

304

Controller

Request Module Associated with /1/

Y

306

Instantiate Controller

A 4

308

Handling

Provide Event to Controller for

Y%

17 Claims, 4 Drawing Sheets

U.S. Patent

110

May 24, 2016 Sheet 1 of 4 US 9,348,669 B2

112

102

106

Services Model
Controller Document Subtree
104

Custom Dispatcher

108

Event Handler

FIG. 1

U.S. Patent May 24, 2016 Sheet 2 of 4 US 9,348,669 B2

N
o

Parent
A Controller
7 216

»]\VAR Pl
202

{ Child i
4 Controller

218

R
DIV i DIV B DIV
204 i 206 208
Text P Text Text
210 Poo212 214

U.S. Patent May 24, 2016 Sheet 3 of 4

CO
o
o

302

Detect Event

l

304

Request Module Associated with
Controller

l

306

Instantiate Controller

l

308

Provide Event to Controller for
Handling

FIG. 3

US 9,348,669 B2

U.S. Patent May 24, 2016 Sheet 4 of 4 US 9,348,669 B2

Computing Device

400
Processor Operating
402 System 404
Memory 406
/O Interface 408 Ul Framework

Application 410

Notification
Platform Database
412

FIG. 4

US 9,348,669 B2

1
USER INTERFACE FRAMEWORK

FIELD

Some implementations relate generally to user interface
frameworks and, more particularly, to methods, systems and
computer readable media for document object model (DOM)
user interface frameworks.

BACKGROUND

Some user interface (Ul) models include, and may require,
the use of Ul software components for both rendering the Ul
and handling user interaction with the UI. Also, in some Ul
models, software components associated with the Ul may be
created and initialized at load time (e.g., at the load time of a
web page), which may cause the page to load slowly and use
memory for components that may not be needed when the
page first loads (or may not be needed at all) depending on
user interaction with the Ul. Further, some Ul models may
require code to set up elements, create objects and listen for
events. Such code can increase the page size of files, reduce
the readability of the page source code (e.g., HTML) and may
increase the load time of a page having code.

SUMMARY

Some implementations can include a method. In some
implementations, the method can include detecting, at a dis-
patcher within a user interface framework, an event emitted
from a user interface element contained within a document
object model node associated with a controller. The method
can also include requesting a module associated with the
controller and instantiating the controller. The method can
further include providing the event to the controller.

The controller can be associated with the document object
model node via a declaration in a mark-up language portion of
the document model object code containing the node. Instan-
tiating the controller can include automatically instantiating
the controller in response to the first occurrence of the event.

The method can also include specifying the controller as
optional, wherein when the controller is specified as optional
and cannot be located by the user interface framework; the
user interface framework does not raise an error based on the
controller not being found. The controller can include one or
more arguments passed to the controller when the controller
is called. The arguments can include one or more of a state-
ment in a declaration of the controller within code declaring
the document object model node; a shared object within a data
model accessible by controllers within the document object
model; and a context.

The document object model node can include an attribute
defining the module and specifying that the module be loaded
prior to instantiating the controller. An instance of the con-
troller can be cached in a root node of the controller. The
method can further include removing the controller instance
when the document object model node instance is destroyed.

Some implementations can include a system having one or
more processors configured to perform operations. The
operations can include detecting, at a dispatcher within a user
interface framework, an event emitted from a user interface
element contained within a document object model node
associated with a controller. The operations can also include
requesting a module associated with the controller. The
operations can further include instantiating the controller and
providing the event to the controller.

10

20

25

40

45

2

The controller can be associated with the document object
model node via a declaration in a mark-up language portion of
the document model object code containing the node. Instan-
tiating the controller can include automatically instantiating
the controller in response to the first occurrence of the event.
The operations can further comprise specifying the controller
as optional, wherein when the controller is specified as
optional and cannot be located by the user interface frame-
work, the user interface framework does not raise an error
based on the controller not being found.

The controller can include one or more arguments passed
to the controller when the controller is called, the arguments
can include one or more of a statement in a declaration of the
controller within code declaring the document object model
node, a shared object within a data model accessible by con-
trollers within the document object model, and a context. The
document object model node includes an attribute defining
the module and specifying that the module be loaded prior to
instantiating the controller. The operations can further com-
prise removing the controller instance when the document
object model node is destroyed.

Some implementations can include a nontransitory com-
puter readable medium having software instructions stored
there on that, when executed by a processor, cause the pro-
cessor to perform operations. The operations can include
detecting, at a dispatcher within a user interface framework,
an event emitted from a user interface element contained
within a document object model node associated with a con-
troller. The operations can also include requesting a module
associated with the controller and instantiating the controller.
The operations can further include providing the event to the
controller.

The controller can be associated with the document object
model node via a declaration in a mark-up language portion of
the document model object code containing the node. Instan-
tiating the controller can include automatically instantiating
the controller in response to the first occurrence of the event.

The document object model node can include an attribute
defining the module and specifying that the module be loaded
prior to instantiating the controller. The operations can further
comprise removing the controller instance when the docu-
ment object model node is destroyed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example system for user interface frame-
works in accordance with some implementations.

FIG. 2 is a flow chart for user interface frameworks in
accordance with some implementations.

FIG. 3 is a flow chart showing an example method for user
interface frameworks in accordance with some implementa-
tions.

FIG. 4 is a diagram fan example computing device config-
ured for user interface frameworks in accordance with some
implementations.

DETAILED DESCRIPTION

Systems, methods and computer readable media for user
interface frameworks are disclosed. In general, in some
implementations, the systems, methods and computer read-
able media can include a Ul framework written in a language,
such as Javascript or the like that compatible with web page
mark-up languages such as hypertext mark-up language
(HTML), extensible mark-up language (XML) or the like.

Some implementations can include a template-rendered Ul
in which the UI controllers are responsible for handling user

US 9,348,669 B2

3

interaction, while rendering is performed via templates. Also,
the Ul controllers can be configured to work with both server-
and client-rendered HTML or other mark-up languages.

The UI framework can include controllers that are instan-
tiated by declaring them in the template using a mark-up
language or scripting language attribute such as controller or
the like. Interfaces connecting controllers can be declara-
tively specified as well.

Also, the Ul controllers can be configured to handle asyn-
chronous actions such as user events, late-loaded services,
and server data requests. The framework can include a depen-
dency-injection style of programming which permits a con-
troller (or even a method ofa controller) to specify what needs
to happen before that controller is invoked. Thus, some of the
complexities typically associated with asynchronous pro-
gramming are absorbed into the framework.

Ul controllers as described herein do not have to be initial-
ized or even created in order to listen for events. A controller
can be constructed automatically the first time an event is sent
to it. Thus, the creation and/or initialization of a controller
does not have to occur at page load time, allowing for a
smaller initial download size as compared to some conven-
tional UI frameworks. The Ul framework as described herein
may be particularly well suited to web applications having
many complex pages that display large amounts of content.

The sometimes complex relationships between objects can
be specified declaratively in the document object model
(DOM) code rather than being constructed imperatively at
application startup time. The setup phase for controllers can
happen as needed and “just in time.”

FIG. 1 shows an example system 100 for user interface
frameworks having a controller 102 that manages a document
subtree 104 (e.g., a subtree of a DOM), handles Ul events and
communicates with a data model 112 exposed through ser-
vices 110. Alternatively, the controller 102 can communicate
directly with the data model 112. Also, the data model 112 can
manage the document subtree 104. The controller 102 and/or
data model 112 can be implemented, for example, as a Java-
Script object bound to an HTML subtree. Events that occur in
the subtree may be handled by the controller 102, specified
through an event handler 108 via HTML attributes. A custom
dispatcher 106 maps event handlers (e.g., 108) to controllers
(e.g., 102), manages their lifecycle and calls methods on
them.

A simple example of an HTML fragment having a control-
ler declaration is shown below for illustration purposes:

<div>
<div controller="foo.SampleController” data-userid="1234">
<button action="click:handleClick”>Click Me</button>
<div jsname="status”></div>
</div>
</div>

An example of a JavaScript corresponding to the above
HTML fragment is shown below:

foo.SampleController = framework.Controller()
foo.SampleController.prototype.handleClick =function() {
this.element(‘status’).text(‘clicked’);

b

FIG. 2 shows a diagram of an example user interface
framework environment 200 having a plurality of div ele-
ments, text elements and controllers. A parent controller 216

10

15

20

25

30

35

40

45

50

55

60

4

controls the subtrees for div 202, div 204 and div 208. A child
controller 218 controls the DOM subtree of div 206.

The controllers (e.g., 216 and 218) are objects that manage
subtrees of the DOM. The controller can be attached to a
DOM element and is responsible for all the DOM nodes that
are children of that element, except for portions that belong to
a child controller.

Events that originate from within the DOM subtree may be
handled by the controller. Events can be native browser events
or application events coming from other controllers. When
multiple controllers need to communicate and share data, the
shared data can be placed into a separate data model object,
which each controller has a reference to. The model object
can contain business logic and can communicate with the
server.

FIG. 3 is a flow chart showing an example method 300 for
user interface frameworks in accordance with some imple-
mentations. Processing begins at 302, where an event is
detected from within a DOM node associated with a control-
ler (e.g., via the declaration technique discussed herein).
Events can include an event from a user interface element or
an event from another controller. Processing continues to 304.

At 304, a module associated with the controller is
requested. The module may be requested just prior to passing
the event to the controller. Processing continues to 306.

At 306, the controller is instantiated and initialized. Pro-
cessing continues to 308.

At 308, the event is provided to the controller for handing.
It will be appreciated that 302-308 can be repeated in whole or
in part in order to accomplish a contemplated UT task.

FIG. 4 is a diagram of an example computing device 400
that can be configured for providing and/or executing user
interface frameworks in accordance with some implementa-
tions. The computing device 400 includes a processor 402,
operating system 404, memory 406 and I/O interface 408.
The memory 406 can include a user interface framework
application 410 and a database 412 (e.g., for storing names of
components, controllers, events, data models or the like).

In operation, the processor 402 may execute the user inter-
face framework application 410 stored in the memory 406.
The user interface framework application 410 can include
software instructions that, when executed by the processor,
cause the processor to perform operations for providing and/
or executing a user interface framework in accordance with
the present disclosure (e.g., the user interface framework
application 410 can perform one or more of steps 302-308
described above and, in conjunction, can access the database
412). The user interface framework application 410 can also
operate in conjunction with the operating system 404, and
services, dispatchers, action handlers, events, document sub-
trees and data models (as shown in FIG. 1).

The user interface framework computing device (e.g., 400)
can include, but is not limited to, a single processor system, a
multi-processor system (co-located or distributed), a cloud
computing system, or a combination of the above.

The client (or user) device(s) can include, but are not lim-
ited to, a desktop computer, a laptop computer, a portable
computer, a tablet computing device, a smartphone, a feature
phone, a personal digital assistant, a media player, televi-
sions, an electronic book reader, an entertainment system of a
vehicle or the like. Also, client/user devices can include wear-
able computing devices (e.g., glasses, watches and the like),
furniture mounted computing devices and/or building
mounted computing devices.

The user devices can be connected to a user interface
framework server via a network. The network connecting
user devices to the user interface framework server can be a

US 9,348,669 B2

5

wired or wireless network, and can include, but is not limited
to, a WiF1 network, a local area network, a wide area network,
the Internet, or a combination of the above.

The data storage, memory and/or computer readable
medium can be a nontransitory medium such as a magnetic
storage device (hard disk drive or the like), optical storage
device (CD, DVD or the like), or electronic storage device
(RAM, ROM, flash, or the like). The software instructions can
also be contained in, and provided as, an electronic signal, for
example in the form of software as a service (SaaS) delivered
from a server (e.g., a distributed system and/or a cloud com-
puting system).

Some implementations of the disclosed method, system,
and computer readable media can be implemented in soft-
ware (e.g., as a computer program product and/or nontransi-
tory computer readable media having stored instructions user
interface frameworks as described herein). The stored soft-
ware instructions can be executed on a programmed general
purpose computer, a special purpose computer, a micropro-
cessor, or the like.

It is, therefore, apparent that there is provided, in accor-
dance with the various example implementations disclosed
herein, systems, methods and computer readable media for
user interface frameworks.

While the disclosed subject matter has been described in
conjunction with a number of implementations, it is evident
that many alternatives, modifications and variations would be
or are apparent to those of ordinary skill in the applicable arts.
Accordingly, Applicants intend to embrace all such alterna-
tives, modifications, equivalents and variations that are within
the spirit and scope of the disclosed subject matter.

What is claimed is:

1. A method comprising:

detecting, at a dispatcher within a user interface frame-

work, an event emitted from a user interface element
contained within a document object model node associ-
ated with a controller, wherein the document object
model node includes an attribute defining a module and
specifying that the module be loaded prior to instantiat-
ing the controller;

requesting the module associated with the controller;

instantiating the controller, wherein instantiating the con-

troller includes automatically constructing the control-
ler in response to a first occurrence of the event; and
providing the event to the controller.

2. The method of claim 1, wherein the controller is asso-
ciated with the document object model node via a declaration
in a mark-up language portion of document model object
code containing the node.

3. The method of claim 1, further comprising specifying
the controller as optional, wherein when the controller is
specified as optional and cannot be located by the user inter-
face framework, the user interface framework does not raise
an error based on the controller not being found.

4. The method of claim 1, wherein the controller can
include one or more arguments passed to the controller when
it is called, the arguments including one or more of:

a statement in a declaration of the controller within code

declaring the document object model node;

a shared object within a data model accessible by control-

lers within the document object model; and

a context.

5. The method of claim 1, wherein an instance of the
controller is cached in a root node of the controller.

6. The method of claim 1, further comprising removing an
instance of the controller when the document object model
node is destroyed.

10

25

30

35

40

45

50

55

60

6

7. The method of claim 1, wherein the controller is declared
in a template using a mark-up language or scripting language
attribute.

8. A system comprising:

one or more processors configured to perform operations

including:

detecting, at a dispatcher within a user interface frame-
work, an event emitted from a user interface element
contained within a document object model node asso-
ciated with a controller, wherein the document object
model node includes an attribute defining a module
and specifying that the module be loaded prior to
instantiating the controller;

requesting the module associated with the controller;

instantiating the controller, wherein instantiating the
controller includes automatically constructing the
controller in response to a first occurrence of the
event; and

providing the event to the controller.

9. The system of claim 8, wherein the controller is associ-
ated with the document object model node via a declaration in
a mark-up language portion of document model object code
containing the node.

10. The system of claim 8, wherein the operations further
comprise specifying the controller as optional, wherein when
the controller is specified as optional and cannot be located by
the user interface framework, the user interface framework
does notraise an error based on the controller not being found.

11. The system of claim 8, wherein the controller can
include one or more arguments passed to the controller when
it is called, the arguments including one or more of:

a statement in a declaration of the controller within code

declaring the document object model node;

a shared object within a data model accessible by control-

lers within the document object model; and

a context.

12. The system of claim 8, wherein the operations further
comprise removing a controller instance when the document
object model node is destroyed.

13. The system of claim 8, wherein the controller is
declared in a template using a mark-up language or scripting
language attribute.

14. A nontransitory computer readable medium having
software instructions stored thereon that, when executed by a
processor, cause the processor to perform operations com-
prising:

detecting, at a dispatcher within a user interface frame-

work, an event emitted from a user interface element
contained within a document object model node associ-
ated with a controller, wherein the document object
model node includes an attribute defining a module and
specifying that the module be loaded prior to instantiat-
ing the controller;

requesting the module associated with the controller;

instantiating the controller, wherein instantiating the con-

troller includes automatically constructing the control-
ler in response to a first occurrence of the event; and
providing the event to the controller.

15. The nontransitory computer readable medium of claim
14, wherein the controller is associated with the document
object model node via a declaration in a mark-up language
portion of document model object code containing the node.

16. The nontransitory computer readable medium of claim
14, wherein the operations further comprise removing an
instance of the controller when the document object model
node is destroyed.

US 9,348,669 B2
7

17. The nontransitory computer readable medium of claim
14, wherein the controller is declared in a template using a
mark-up language or scripting language attribute.

#* #* #* #* #*

